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ABSTRACT

This paper describes a systematic method for mod-
eling the class of electro-mechanical micro-systems that
can be represented as multi-component, lumped, mass-
spring-dashpot structures. Examples include accelerom-
eters, gyros, and other structures that have rigid masses
and compliant springs. In this lumped modeling as-
sumption, the lumped spring effect originates from me-
chanical reaction forces and moments of the suspensions
(or tethers) holding the proof-mass. Damping forces
result from multiple energy loss mechanisms, but are
dominated by gas viscosity. In addition, there are elec-
trostatic forces and torques exerted on the dielectrically
separated conductors in the system when voltages are
applied. The accuracy of the developed method is ver-
ified by comparison of two plate-tether MEMS struc-
tures to results obtained from the developed models with
those from full 3-D physics simulations. Good accuracy
is demonstrated in both spatial-domain and frequency-
domain dynamic behavior of the models.

Keywords: Micro-system, MEMS, macro-model, sim-
ulation.

INTRODUCTION

The ability of MEMS devices to be integrated with
signal conditioning circuitry and batch fabricated offers
an important advantage over their macroscopic coun-
terparts. To ensure proper functioning of such an in-
tegrated system, one must perform system-level simu-
lation. Such system-level modeling is extremely useful
in determining operation characteristics and verifying
performance before the device is actually manufactured.
This can reduce the need for prototype fabrication and
test iterations and significantly reduce time-to-market.
Thus, macro-model construction is a key part of a design
methodology.

Performing full 3-D physical simulation within each
time step of a typical system simulator (such as SABER,
MATLAB, or SPICE) is prohibitively time-consuming
and numerically impractical. Hence, in order to simu-
late the appropriate system level dynamic behavior ef-
ficiently, a reduced-ordered model or ”macro-model” of

the MEMS subsystem must be obtained and employed
in the system-level simulator.

As micro-systems become more complex and the need
for models with large numbers of coupled degrees-of-
freedom (DOFs) increases, the use of automated tools
for generating macro-models becomes increasingly im-
portant. Although macro-modeling techniques have been
reported by some researchers ([2], [3]), currently there is
no systematic method for generating macro-models for
MEMS devices in an automatic way.

This paper describes a semi-automatic and complete
modeling procedure that automates the generation of
component-level macro-models of MEMS devices. The
user assembles the system-level model by connecting in-
dividual component-level macro-models together. For
simplicity, the developed method assumes that while the
tethers provide mechanical compliance, they are electro-
statically inert and massless. It also assumes that the
proof mass is electrostatically driven and moves as a
rigid body. Devices that do not move as a rigid body,
such as membrane devices cannot be accurately modeled
in this technique.

The procedure begins by dividing the whole device
into sub-components such as mechanical springs, elec-
trostatic elements, dashpots, and proof-masses. These
subcomponents are separately meshed and simulated in
finite element method (FEM) and boundary element
method (BEM) solvers over the desired ranges of op-
eration. These full 3-D physics simulations are done in
MEMCAD [8] using hybrid finite element and acceler-
ated boundary element physics. The results of these
simulations are fitted to multi-variable polynomials as
functions of the desired DOFs. The macro-models for
each subcomponent are then automatically generated in
the behavioral modeling language of a system level sim-
ulator (SABER, SPICE, etc.). Finally, the component-
level macro-models are assembled into a system-level de-
sign to model the behavior of the whole system.

THEORY

The modeling approach assumes coupling between
three translational degrees of freedom (DOFs) and three
rotational DOFs. While the translational DOFs are
aligned with the axes of a general three-dimensional co-




ordinate system, a rather complex notation is used to
denote the rotational degrees. According to Euler, any
rigid body rotation can be described as one effective ro-
tation around an arbitrarily oriented rotational axis.

The effective rotation 6 is defined by its three com-
ponents 6., 8,, and 6, as follows:

1=\ /62 + 62 + g2

The unit rotation vector is defined as

] 3 2 1 % 5 s
ai+bj+ck = m(&;l + 0,5 +6.k)
Hence, the position vector is comprised of three trans-
lations and three rotations:

m:[xyzﬁxﬁyﬁz]T

The complete system model is expressed as a set of
equations for each of these degrees of freedom. The
complete system assumes equilibrium in total system
energy. Equilibrium in the DOFs is achieved by bal-
ancing the total force and torque acting on the system.
For a typical mass-spring-dashpot structure, the force-
balance takes the following form:

fe:ctzfs +fe+fd+fm (l)

where f..; is the force applied by external acceleration
or other force sources (if any), f, is the mechanical
spring reaction force, f. is the electrostatic force, f; is
the damping force, and fm is the inertial force experi-
enced by the proof mass. The torque-balance equation
takes a form similar to Eq. 1. In the general case, Eq. 1is
a vector equation in six degrees of freedom, «, and all fs
are matrices. Each matrix element of f can be expanded
in a Taylor series where we can choose the number of
terms we care to retain. For example, a constant term in
fs represents a simple linear spring constant in a system
where the degrees of freedom are uncoupled, f, = k,z.
In asix DOF system, k; can be represented by a poly-
nomial hyper-surface coupled in six degrees of freedom.
In the work described here we keep terms up to fourth
order. The coefficients of these polynomial expressions
are found from full 6-D simulations of different physical
effects (described below).

Component Level Equations of Motion

The equations of motion for the total structure are
found by combining the mathematical model for each
individual component. Following is a brief description
of the system equations of a few representative MEMS
components:

1. Proof Mass: A proof mass in a MEMS system is
described by its mass, constant moments of inertia
In its body-centered fixed coordinate system, and
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its center of mass. In a multi-DOF system, the
coupling and interaction between the translational
and rotational DOF's results in complex equations
of motion for the proof-mass dynamics. A well-
known part of this complex cross-coupling is the
Coriolis effect. In order to be able to accurately
predict the coupling between different DOFs and
the dynamic motion of the proof-mass, one must
retain the rotational coupling terms.

Force Equations: The forces along the linear DOFs
are given by [1]:

F=m(d+wxuv) (2)
where F is the force vector and m and v are re-
spectively mass and linear velocities.

Hence, the force components are given by

z 0 —wr Wy z
miy|l+m| w, 0 -, v (3)
z —wy  wg 0 z

Moment Equations: The moments around the center-
of-mass coordinate axes are given by [1]:

M=H+wxH (4)

where M is the moment vector and m, v, H, and w
are respectively mass, velocity vector, angular mo-
mentum vector, and angular velocity vector. The
angular momentum & is computed from the mo-
ment of inertia matrix and the angular velocity
vector:

H. Iz -Iry —I,; W
Hy | =1 -1 Lyy =1 “y ()
H, -1, _Izy L. Wz

To avoid computation of varying moments of iner-
tia of the proof-mass in the global coordinate sys-
tem, these equations are computed in a frame of
reference firmly attached at the body center of the
proof-mass, thus making it subject to the rotations
and translations that the mass experiences. The
forces and moments so computed are then trans-
formed to the global coordinate system in order to
perform system-level simulation.

The moment equations in the global coordinate
system are found by

MXYZ :TMryz (6)

where T is the transformation matrix between the
global (XY Z) and local (zyz) coordinate systems.

i
:
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Figure 1: Sequence of Operations

2. Tether: The forces and moments exerted by a me-
chanical tether are represented by:

fs = ks
where k; is a combination of different order ma-

trices with coupling coefficients between different
DOFs.

3. Electrostatic Elements: Electrostatic forces are found

by computing the spatial derivative of electrostatic

energy:
_ 1 7d[Cj]
fo= v S2ily ™

Equation 7 yields the electrostatic force as a func-
tion of one degree of freedom (x). Generalizing
this to n degrees of freedom, the derivative be-
comes the spatial derivative of the n-dimensional
capacitance surface.

4. Damper: The forces and moments exerted by a
damper are computed by the following equation:

fa=kaz

where kg is the damping coefficient matrix and z
1s the spatial first-derivative of the DOF vector .

Reusable Components

Most practical inertial MEMS devices contain mul-
tiple tethers and one or more electrostatic structures
(e.g., combs), which are connected to the proof mass at
multiple positions and orientations. Since these compo-
nents are typically identical, one would like to perform
detailed 3-D analysis only once and use the resulting
model at multiple locations in the system model.

In the developed modeling technique, the mechani-
cal springs and electrostatic force elements are simulated
as independent entities in their local coordinate system.
This allows them to be used in any device model with the
help of converters that transform the degrees of freedom
(translational and rotational), forces, and moments be-
tween these two systems. Another set of transformations
are needed to transform the forces and torques applied
by the spring at the location where it is connected to the

Figure 2: (a) Finite element mesh of example
plate-tether structure, (b) Dominant mode-shape in
Rotational-Y degree of freedom for example torsional
mirror. (Dotted line shows approximate position and
size of electrode underneath the plate).
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Figure 3: Schematic of the plate-tether structure model
build from lumped elements (Through Variables: force,
torque, current; Across Variables: position, angle, volt-
age)

center of mass of the proof mass. This allows the proof
mass to be treated as a rigid body with its mass con-
centrated at its center of mass. These transformations
include various types of Euler’s and rotational trans-
formations (and their inverse transformations) between
coordinate systems.

IMPLEMENTATION

The modeling technique has been implemented in a
tool named AutoMM (Auto Macro Modeler). The basic
steps involve exploring the device operation space, mod-
eling the data through multi-degree polynomial curve-
fitting, and using the polynomial coefficients and other
simulation data in dynamic equations. AutoMM con-
sists of several sub-modules that are used to simulate the

Degrees of Freedom | AutoMM [ Full 3-D [ % Error |

Translational X 811.91K | 825.23K -1.61
Translational Y 4421.7K | 4342.8K | +1.82
Translational Z 433.39K | 431.06K | +0.54
Rotational X 920.52K | 939.29K -1.99
Rotational Y 716.11K | 710.70K | +0.76
Rotational Z 3439.8K | 3428.8K | +0.32

Table 1: Comparison of modal frequencies obtained
from AutoMM model and full 3-D physics simulation
for plate-tether structure in Figure 2(a).
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Figure 4: Frequency response in six degrees of freedom
for the plate-tether structure in Figure 2(a).

Figure 5: Schematic of torsional mirror model.

electrostatic, mechanical and inertial behavior of MEMS
components in their operation space as a function of the
DOFs.

AutoMM is built around the basic functionalities of
the MEMCAD software tool suite [8]. It directly uses
the MEMCAD device creation and visualization meth-
ods and applies wrappers around the solver modules.
AutoMM is constructed as a collection of functional sub-
modules. This allows the flexible addition of compo-
nents with different physical behaviors. It also allows
the calculation of the behavioral data to be done in
parallel which reduces the over-all time of macro-model
generation.

Sequence of Operations

Figure 1 shows the sequence of operations that are
carried out by the AutoMM module to generate macro-
models. The procedure starts by creating the device
solid model using the MemBuilder’ module of MEM-
CAD [8] from the device process information and the
device layout. Then a finite-element mesh is created
on the solid model. This meshed solid model is input
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Figure 6: Frequency response in six degrees of freedom
for torsional mirror in Figure 2(b).

to the AutoMM module which first carries out a global
base transformation on the meshed structure according
to the specifications provided by the designer. Exam-
ples of such transformations include changing separa-
tions of structures, angular orientations, lengths, thick-
nesses, density, Poisson ratio, stress, and other geometri-
cal and material properties of different subsets of device
components. Note that this step can account for the
effects of manufacturing variations in the final device
macro-model.

The transformed models are then passed to the sub-
modules that perform electrostatic, mechanical, and in-
ertial simulations using multi-DOF boundary conditions.
The simulation data are then fit to multi-degree polyno-
mial equations (up to fourth order), which are functions
of the degrees of freedom over which the device has been
simulated. These polynomial fit coefficients are finally
used in system equations to create the device macro-
model. Although most of these steps are automated,
user interactions and interventions have been allowed
in a few cases to include the capability of monitoring
the simulation process and specification of user-defined
macro-mode] parameters.

VERIFICATION

In order to verify the accuracy of this modeling tech-
nique, we have examined several MEMS structures. Here
we present results for two of them. The first one is a sim-
ple horizontal plate structure with four parallel tethers
at the four corners. Figure 2(a) shows the mass-spring
meshed structure. Figure 3 shows the equivalent system
model implemented in the SABER simulation tool. The
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[ Degrees of Freedom | AutoMM [ Full 3-D [ % Error |

Translational X 593.19K | 583.53K | +1.66
Translational Y 3034.0K | 3070.8K -1.20
Translational Z 297.38K | 304.82K -2.44
Rotational X 672.54K | 664.19K | +1.26
Rotational Y 169.02K | 165.36K | +2.21
Rotational Z 1111.3K | 1138.3K -2.37

Table 2: Comparison of modal frequencies obtained
from AutoMM model and full 3-D physics simulation
for torsional mirror in Figure 2(b).

DOF 25 Volis 150 Volts
F3D | AM | %E || F3D | AM %E
Tz -1.60 | -1.56 | 2.5 -65 60 | 7.7
(nm)
Rx 2.526 | 2.46 1 102.5 | 89.6 | 12.6
(p rad)
Ry 40.95 | 39.5 | 3.5 || 1700 | 1550 | 8.8
(p rad)

Table 3: Comparison of displacements and rotations in
the dominant DOFs between full 3-D simulation and
AutoMM results for two voltages (pull-in occurs at 219
volts). F3D, AM, and %E indicate full 3-D physics sim-
ulation results, AutoMM results, and percentage errors,
respectively.

results of the lumped modeling technique are compared
to the resonant frequency results of-full 3-D physics sim-
ulation. Figure 4 shows the frequency response from
the model for all DOFs. Table 1 compares the modal
frequencies found from the model and full 3-D physics
simulation, which show good agreement.

A torsional mirror with a ground electrode was also
investigated. The ground electrode is under one of the
corner of the plate and the plate is suspended by two
tethers. A voltage applied between the plate and the
electrode tilts the mirror assymetrically towards the fixed
electrode. Figure 2(b) shows a dominant mode-shape
of the structure found from full 3-D physics simula-
tion. Figure 5 shows the equivalent system model. Fig-
ure 6 shows the frequency response from the model and
Table 2 compares the corresponding modal frequencies
with those obtained from full 3-D physics simulation.
Table 3 compares the changes in the dominant DOFs
with applied voltage. The displacements and rotations
show reasonable agreement to those found from the MEM-
CAD coupled, full 3-D electromechanical solver. The
observed results also show that the error increases as
the applied voltage gets close to the pull-in voltage.

CONCLUSION

We have demonstrated a modeling procedure that
automates the generation of macro-models of MEMS
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devices and shows good agreement to full 3-D physics
simulation. The implemented modeling technique is cur-
rently limited to the class of devices where the actuating
and restoring forces are limited to electrostatic, mechan-
ical (tensile and torsional), damping, and inertial types.
Future developments will consider electrostatically ac-
tive mechanical tethers with nonzero mass and macro-
models for other physical forces, such as fluidic pressure,
thermal stress, piezo-electric potential, etc.
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